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Adaptive Feedback Control

• Control systems with fixed

gain controllers cannot deal

with catastrophic changes or

degradation in plant

• Adaptive systems (e.g., NN)

can react to unexpected

situations through learning

• Large potential for adaptive

control systems

– IFCS NN controlled aircraft

– UAV control, . . .



Adaptive Control

correction of system by adaptation of control law

• Neural Network produces correction signal UAD

• goal: keep deviation as small as possible

• Network is trained (adapted) during operation



Verification & Validation — traditional methods
• Fault avoidance (by design):

Analysis and Simulation

– frequency response

– stability and robustness

– controllability

– analysis of covariance

• Fault removal (find and fix prob-
lem):

– testing, testing, and testing

• Fault tolerant (fail-safe) designs:

– redundancy

– robustness
While still useful, traditional methods alone are insufficient for

verification & validation of adaptive control systems



Verification & Validation — adaptive Control
• Fault avoidance (by design):

Analysis and Simulation

– frequency response

– stability and robustness

– controllability

– analysis of covariance

• Fault removal (find and fix prob-
lem):

– testing, testing, and testing

• Fault tolerant (fail-safe) designs:

– redundancy

– robustness

• Applies to base-line case
only

– unanticipated failure?

– unmodeled failure?

• cannot test all possible
configurations in advance

• not possible: fault tol-
erance under all circum-
stances

While still useful, traditional methods alone are insufficient for

verification & validation of adaptive control systems



Performance Estimation of Neural Network

traditional

• black box: output is “just the function value”

• no estimate on quality of the NN output

our approach

• black box + error bars (confidence interval on NN outputs)

o ∼ N(µo, σ
2)

• small error bar σ2 = good quality; large error bar = bad



Our Bayesian Approach

Bayesian analysis provides a proven statistical foundation

on which to judge neural network performance

Basic ideas

• “Engineering Assumption”: Data and weights are Gaussian
distributed

• Performance measure = standard deviation σ2 of p(o|x,H)

• p(o|x,H) =
∫

p(o|x,w)p(w|H) dw

• where

– x network input, o network output,

– H training history,

– w network weights



Our Bayesian Approach II

To calculate

p(o|x,H) =

∫
p(o|x,w)p(w|H) dw

we obtain the Posterior Distribution of the weights after training
with training data H, namely p(w|H) by using Bayes’ rule

p(w|H) =
p(H|w)p(w)

p(H)

Formula for σt
2 depends on current network input, weights, training

history, and network architecture.



Performance of Neural Network

• IFCS Gen-II simulator and Confidence Tool (previous work)

• failure (stuck stabilator) at t = 1.5s

• blue line: neural network output (UAD)

• red line: error bars ±σ2



Envelope Tool

• Lyapunov error bound defines regions of

eventual stability

• Regions where confidence is small might

cause instability

• Informally: a safe envelope is a region

where the confidence level is sufficiently

high

• Approach: Bayesian approach combined

with sensitivity analysis

Can help answer questions like:
How large is the current safe envelope?
How far is the operational point from the edge?



Interpretation of Some Results

A low network performance, low sensitivity: network needs to adapt

B good performance, low sensitivity: good behavior

C good performance, high sensitivity: network might be overtrained

(small changes in operation point lead to drastic performance

reduction)



Efficient Calculation of Performance Envelope

• On-going work

• Minimize number of calculations

• Important for dynamic envelope
determination

• Based on algorithms from:

– “Design of Experiments”

– dynamic gridding

– computational geometry



Conclusions and Future Work

• Accomplishments

– Envelope Tool: mathematical background and prototypical

Simulink implementation, first experimental results

– Case Study I: IFCS Gen-II flight control (non-ITAR simulator,

Dryden Sim data, test-flight data)

• Future work

– extend to parameter confidence during system ID

– extend to other model representation (e.g., interpolation table)

– relate NN performance measure to system performance

– Case Study II and III: TBD


